المتوسط المتحرك يعلمك هذا المثال كيفية حساب المتوسط المتحرك لسلسلة زمنية في إكسيل. ويستخدم المتوسط المتحرك للتخلص من المخالفات (قمم ووديان) للتعرف بسهولة على الاتجاهات. 1. أولا، دعونا نلقي نظرة على السلاسل الزمنية لدينا. 2. من علامة التبويب بيانات، انقر فوق تحليل البيانات. ملاحظة: لا يمكن العثور على زر تحليل البيانات انقر هنا لتحميل الوظيفة الإضافية تولباس تولباك. .3 حدد متوسط النقل وانقر فوق موافق. .4 انقر في مربع نطاق الإدخال وحدد النطاق B2: M2. 5. انقر في المربع الفاصل الزمني واكتب 6. 6. انقر في المربع نطاق الإخراج وحدد الخلية B3. 8. رسم رسم بياني لهذه القيم. إكسلاناتيون: لأننا نقوم بضبط الفاصل الزمني الى 6، المتوسط المتحرك هو متوسط نقاط البيانات الخمس السابقة ونقطة البيانات الحالية. ونتيجة لذلك، يتم تمهيد قمم والوديان. يظهر الرسم البياني اتجاها متزايدا. لا يستطيع إكسيل حساب المتوسط المتحرك لنقاط البيانات الخمس الأولى لأنه لا توجد نقاط بيانات سابقة كافية. 9. كرر الخطوات من 2 إلى 8 للفاصل الزمني 2 والفاصل الزمني 4. الخاتمة: كلما زاد الفاصل الزمني، كلما تم تمهيد القمم والوديان. كلما كانت الفاصل الزمني أصغر كلما اقتربت المتوسطات المتحركة من نقاط البيانات الفعلية. كيفية حساب المتوسطات المتحركة المرجحة في إكسيل باستخدام الأسي تمهيد تحليل بيانات إكسيل للدمى، الطبعة الثانية أداة التمدد الأسي في إكسيل بحساب المتوسط المتحرك. ومع ذلك، فإن قيم ترجيح الأسية القيم المدرجة في حسابات المتوسط المتحرك بحيث يكون للقيم الأحدث تأثير أكبر على متوسط الحساب والقيم القديمة لها تأثير أقل. ويتم هذا الترجيح من خلال ثابت التمهيد. لتوضيح كيفية عمل أداة التمدد الأسي، افترض أنك 8217re تبحث مرة أخرى في متوسط معلومات درجة الحرارة اليومية. لحساب المتوسطات المتحركة المرجح باستخدام تمهيد أسي، اتبع الخطوات التالية: لحساب متوسط متحرك أضعافا مضاعفة، انقر أولا على الزر الأمر 8217s تحليل بيانات البيانات. عندما يعرض إكسيل مربع الحوار تحليل البيانات حدد عنصر التمدد الأسي من القائمة ثم انقر فوق موافق. يعرض إكسيل مربع الحوار أسيوننتيال سموثينغ. حدد البيانات. لتحديد البيانات التي تريد حساب متوسط متحرك أضعافا مضاعفة، انقر في مربع النص نطاق الإدخال. ثم حدد نطاق الإدخال، إما عن طريق كتابة عنوان نطاق ورقة عمل أو عن طريق تحديد نطاق ورقة العمل. إذا كان نطاق الإدخال يتضمن تسمية نص لتحديد بياناتك أو وصفها، فحدد مربع الاختيار التصنيفات. توفير ثابت التمهيد. أدخل قيمة ثابت التجانس في مربع النص عامل التخميد. ملف إكسيل هيلب يوحي باستخدام ثابت التمهيد بين 0.2 و 0.3. ويفترض، ومع ذلك، إذا كنت 8217re استخدام هذه الأداة، لديك الأفكار الخاصة بك حول ما ثابت ثابت التجانس هو. (إذا كنت 8217re جاهل حول ثابت تجانس، وربما كنت mustn8217t باستخدام هذه الأداة.) أخبر إكسيل مكان وضع البيانات المتوسط المتحرك ممسود أضعافا مضاعفة. استخدم مربع النص نطاق الإخراج لتحديد نطاق ورقة العمل الذي تريد وضع بيانات المتوسط المتحرك. في مثال ورقة العمل، على سبيل المثال، تضع بيانات المتوسط المتحرك في نطاق ورقة العمل B2: B10. (اختياري) قم بتخطيط البيانات الملساء أضعافا مضاعفة. لرسم البيانات التي تم تمهيدها بشكل متسارع، حدد خانة الاختيار مخطط الإنتاج. (اختياري) تشير إلى أنك تريد حساب معلومات الخطأ القياسية. لحساب الأخطاء القياسية، حدد خانة الاختيار أخطاء قياسية. يضع إكسيل قيم الخطأ القياسية بجوار قيم المتوسط المتحرك الممهدة أضعافا مضاعفة. بعد الانتهاء من تحديد معلومات المتوسط المتحرك التي تريد حسابها والمكان الذي تريد وضعه فيه، انقر فوق موافق. يحسب إكسيل معلومات المتوسط المتحرك. إضافة اتجاه أو متوسط خط متحرك إلى مخطط ينطبق على: إكسيل 2016 ورد 2016 بويربوانت 2016 إكسيل 2013 ورد 2013 أوتلوك 2013 بويربوانت 2013 أكثر. أقل لعرض اتجاهات البيانات أو التحرك المتوسطات في مخطط قمت بإنشائه. يمكنك إضافة خط الاتجاه. يمكنك أيضا تمديد خط اتجاه يتجاوز البيانات الفعلية للمساعدة في التنبؤ القيم المستقبلية. على سبيل المثال، يتنبأ خط الاتجاه الخطي التالي بربعين قبل ذلك ويظهر بوضوح اتجاها تصاعديا يبدو واعدا للمبيعات المستقبلية. يمكنك إضافة خط الاتجاه إلى مخطط 2-D التي ليست مكدسة، بما في ذلك المنطقة، شريط، العمود، الخط، الأسهم، مبعثر، و فقاعة. لا يمكنك إضافة خط الاتجاه إلى مكدسة، 3-D، الرادار، فطيرة، سطح، أو الرسم البياني دونات. إضافة خط الاتجاه في المخطط، انقر على سلسلة البيانات التي تريد إضافة خط اتجاه أو متوسط متحرك لها. سيبدأ خط الاتجاه على نقطة البيانات الأولى لسلسلة البيانات التي تختارها. حدد المربع تريندلين. لاختيار نوع مختلف من خط الاتجاه، انقر على السهم بجوار تريندلين. ثم انقر فوق الأسي. توقعات خطية. أو اثنين من فترة الانتقال المتوسط. بالنسبة لخطوط الاتجاه الإضافية، انقر على المزيد من الخيارات. إذا اخترت المزيد من الخيارات. انقر فوق الخيار الذي تريده في جزء "تنسيق الاتجاه" ضمن خيارات تريندلاين. إذا قمت بتحديد الحدودي. أدخل أعلى قوة للمتغير المستقل في المربع الأمر. إذا حددت متوسط النقل. أدخل عدد الفترات لاستخدامها لحساب المتوسط المتحرك في المربع الفترة. نصيحة: خط الاتجاه هو الأكثر دقة عندما تكون قيمة R-سكارد (عدد من 0 إلى 1 تكشف عن مدى دقة القيم المقدرة لخط الاتجاه تتوافق مع بياناتك الفعلية) عند أو بالقرب من 1. عند إضافة خط اتجاه إلى بياناتك ، يقوم إكسيل تلقائيا بحساب قيمة R-سكارد. يمكنك عرض هذه القيمة على المخطط الخاص بك عن طريق التحقق من قيمة العرض R-سكارد على مربع الرسم البياني (تنسيق جزء الاتجاه، خيارات تريندلاين). يمكنك معرفة المزيد عن جميع خيارات خط الاتجاه في الأقسام أدناه. خط الاتجاه الخطي استخدم هذا النوع من خط الاتجاه لإنشاء خط مستقيم أفضل تناسب لمجموعات البيانات الخطية البسيطة. البيانات الخاصة بك خطية إذا كان النمط في نقاط البيانات الخاصة به يشبه خط. خط الاتجاه الخطي عادة ما يظهر أن شيئا ما يتزايد أو ينخفض بمعدل ثابت. يستخدم خط الاتجاه الخطي هذه المعادلة لحساب المربعات الصغرى تناسب لخط: حيث m هو المنحدر و b هو اعتراض. ويبين الخط الاتجاهي التالي أن مبيعات الثلاجات زادت باستمرار على مدى 8 سنوات. لاحظ أن قيمة R-سكارد (عدد من 0 إلى 1 الذي يكشف عن مدى دقة القيم المقدرة لخط الاتجاه تتوافق مع البيانات الفعلية الخاصة بك) هو 0.9792، وهو مناسب تماما للخط إلى البيانات. عرض خط منحني أفضل تناسب، وهذا الاتجاه هو مفيد عندما معدل التغير في البيانات يزيد أو ينخفض بسرعة ثم مستويات خارج. خط الاتجاه اللوغاريتمي يمكن أن يستخدم القيم السلبية والإيجابية. يستخدم خط الاتجاه اللوغاريتمي هذه المعادلة لحساب المربعات الصغرى تناسب من خلال النقاط: حيث c و b هي الثوابت و لن هي وظيفة اللوغاريتم الطبيعي. ويظهر خط الاتجاه اللوغاريتمي التالي النمو السكاني المتوقع للحيوانات في منطقة ذات مساحة ثابتة، حيث انخفض عدد السكان المستخرج كمساحة للحيوانات. لاحظ أن قيمة R-سكارد هي 0.933، وهو مناسب نسبيا من الخط إلى البيانات. يعد هذا الاتجاه مفيدا عندما تتقلب بياناتك. على سبيل المثال، عند تحليل المكاسب والخسائر على مجموعة بيانات كبيرة. ترتيب الحدودي يمكن تحديدها من قبل عدد من التقلبات في البيانات أو عدد الانحناءات (التلال والوديان) تظهر في المنحنى. عادة، يوجد خط اتجاه متعدد الحدود من أجل 2 يحتوي على تلة أو وادي واحد فقط، ويشتمل الأمر 3 على واحد أو اثنين من التلال أو الوديان، ويوجد في الأمر 4 ما يصل إلى ثلاثة تلال أو وديان. خط الاتجاه متعدد الحدود أو المنحني يستخدم هذه المعادلة لحساب المربعات الصغرى تناسب من خلال النقاط: حيث b والثوابت. ويظهر خط الاتجاه 2 متعدد الحدود التالي (تلة واحدة) العلاقة بين سرعة القيادة واستهلاك الوقود. لاحظ أن قيمة R-سكارد هي 0.979، التي هي قريبة من 1 حتى الخطوط تناسب البيانات. عرض خط المنحني، هذا الاتجاه هو مفيد لمجموعات البيانات التي تقارن القياسات التي تزداد بمعدل معين. على سبيل المثال، تسارع سيارة سباق في فترات 1 ثانية. لا يمكنك إنشاء خط اتجاه طاقة إذا كانت بياناتك تحتوي على قيم صفر أو سلبية. يستخدم خط الاتجاه الطاقة هذه المعادلة لحساب المربعات الصغرى تناسب من خلال نقاط: حيث c و b هي الثوابت. ملاحظة: لا يتوفر هذا الخيار عندما تتضمن البيانات قيما سلبية أو صفرية. يظهر مخطط قياس المسافة التالي المسافة بالأمتار بالثواني. يوضح خط التيار الكهربائي بوضوح تسارع متزايد. لاحظ أن قيمة R-سكارد هو 0.986، وهو مثاليا تقريبا من الخط إلى البيانات. عرض خط المنحني، وهذا الاتجاه هو مفيد عندما ترتفع قيم البيانات أو تنخفض بمعدل متزايد باستمرار. لا يمكنك إنشاء خط اتجاه أسي إذا كانت بياناتك تحتوي على قيم صفر أو سلبية. يستخدم خط الاتجاه الأسي هذه المعادلة لحساب المربعات الصغرى التي تناسب من خلال النقاط: حيث c و b هي الثوابت و e هو قاعدة اللوغاريتم الطبيعي. ويظهر خط الاتجاه الأسي التالي تناقص كمية الكربون 14 في جسم ما عند عمره. لاحظ أن قيمة R-سكارد هي 0.990، مما يعني أن الخط يناسب البيانات تقريبا تقريبا. موفينغ ترافيك ترندلين هذا الاتجاه يدل على تقلبات في البيانات لإظهار نمط أو اتجاه أكثر وضوحا. يستخدم المتوسط المتحرك عددا محددا من نقاط البيانات (يحددها خيار الفترة)، ويتوسطها، ويستخدم متوسط القيمة كنقطة في السطر. على سبيل المثال، إذا تم تعيين الفترة إلى 2، يتم استخدام متوسط أول نقطتي بيانات كنقطة أولى في خط الاتجاه المتوسط المتحرك. ويستخدم متوسط نقاط البيانات الثانية والثالثة كنقطة ثانية في خط الاتجاه، وما إلى ذلك. ويستخدم خط الاتجاه المتوسط المتحرك هذه المعادلة: عدد النقاط في خط اتجاه متوسط متحرك يساوي العدد الإجمالي للنقاط في السلسلة، مطروحا منه الرقم الذي تحدده للفترة. في المخطط المبعثر، يقوم خط الاتجاه بناء على ترتيب القيم x في المخطط. للحصول على نتيجة أفضل، صنف القيم x قبل إضافة متوسط متحرك. يظهر خط الاتجاه المتوسط المتحرك التالي نمطا في عدد المنازل المباعة على مدى 26 أسبوعا. الاستكشاف يعد معدل التذبذب المتوسط المرجح أضعافا مضاعفة هو المقياس الأكثر شيوعا للمخاطر، ولكنه يأتي في العديد من النكهات. في مقال سابق، أظهرنا كيفية حساب التقلبات التاريخية البسيطة. (لقراءة هذه المقالة، راجع استخدام التقلب لقياس المخاطر المستقبلية.) استخدمنا بيانات سعر السهم الفعلي من غوغل من أجل احتساب التقلبات اليومية استنادا إلى بيانات 30 يوما من بيانات المخزون. في هذه المقالة، سوف نحسن التقلبات البسيطة ونناقش المتوسط المتحرك المرجح أضعافا مضاعفة (إوما). تاريخي مقابل التقلب الضمني أولا، يتيح وضع هذا المقياس في القليل من المنظور. هناك نهجان واسعان: التقلب التاريخي والضمني (أو الضمني). يفترض النهج التاريخي أن الماضي هو مقدمة نقيس التاريخ على أمل أن يكون التنبؤي. ومن ناحية أخرى، يتجاهل التقلب الضمني التاريخ الذي يحل فيه التقلبات التي تنطوي عليها أسعار السوق. وهي تأمل أن يعرف السوق أفضل وأن سعر السوق يتضمن، حتى ولو ضمنا، تقديرا للآراء بشأن التقلب. (للاطلاع على القراءة ذات الصلة، انظر استخدامات وحدود التقلب). إذا ركزنا على النهج التاريخية الثلاثة فقط (على اليسار أعلاه)، فإن لديهم خطوتين مشتركتين: حساب سلسلة العوائد الدورية تطبيق مخطط الترجيح أولا، نحن حساب العائد الدوري. ثاتس عادة سلسلة من العوائد اليومية حيث يتم التعبير عن كل عودة في مصطلحات معقدة باستمرار. لكل يوم، ونحن نأخذ السجل الطبيعي لنسبة أسعار الأسهم (أي السعر اليوم مقسوما على السعر أمس، وهلم جرا). هذا ينتج سلسلة من العوائد اليومية، من ش أنا ش أنا م. اعتمادا على عدد الأيام (م أيام) نحن قياس. وهذا يقودنا إلى الخطوة الثانية: هذا هو المكان الذي تختلف فيه النهج الثلاثة. في المقالة السابقة (باستخدام التقلب لقياس المخاطر المستقبلية)، أظهرنا أنه في ظل اثنين من التبسيط المقبول، التباين البسيط هو متوسط العوائد التربيعية: لاحظ أن هذا المبلغ كل من الإرجاع الدوري، ثم يقسم المجموع بواسطة عدد الأيام أو الملاحظات (م). لذلك، في الواقع مجرد متوسط من المربعات الدورية المربعة. وبعبارة أخرى، يعطى كل مربع مربعة وزن متساو. لذلك إذا كان ألفا (a) عامل ترجيح (على وجه التحديد، 1m)، فإن التباين البسيط يبدو شبيها بهذا: إوما يحسن على التباين البسيط ضعف هذا النهج هو أن جميع العوائد تكسب نفس الوزن. يوم أمس (الأخيرة جدا) عودة ليس لها تأثير أكثر على الفرق من الأشهر الماضية العودة. يتم إصلاح هذه المشكلة باستخدام المتوسط المتحرك المرجح أضعافا مضاعفة (إوما)، حيث يكون لعوائد أكثر حداثة وزنا أكبر على التباين. المتوسط المتحرك المرجح أضعافا مضاعفة (إوما) يدخل لامدا. والتي تسمى المعلمة تمهيد. يجب أن يكون لامبدا أقل من واحد. وبموجب هذا الشرط، بدلا من الأوزان المتساوية، يتم ترجيح كل عائد مربعة بمضاعف على النحو التالي: على سبيل المثال، ريسكمتريكس تم، وهي شركة لإدارة المخاطر المالية، تميل إلى استخدام لامدا 0.94، أو 94. في هذه الحالة، (0-1.94) (.94) 0 6. العائد التربيعي التالي هو ببساطة مضاعف لامدا للوزن السابق في هذه الحالة 6 مضروبا في 94 5.64. والثالث أيام السابقة الوزن يساوي (1-0.94) (0.94) 2 5.30. ثاتس معنى الأسي في إوما: كل وزن هو مضاعف ثابت (أي لامدا، التي يجب أن تكون أقل من واحد) من وزن الأيام السابقة. وهذا يضمن التباين المرجح أو المنحاز نحو المزيد من البيانات الحديثة. (لمعرفة المزيد، راجع ورقة عمل إكسيل لتقلب غوغل.) يظهر أدناه الفرق بين تقلب ببساطة و إوما ل غوغل. التقلب البسيط يزن بشكل فعال كل عائد دوري بمقدار 0.196 كما هو مبين في العمود O (كان لدينا عامين من بيانات أسعار الأسهم اليومية، أي 509 عائد يومي و 1509 0.196). ولكن لاحظ أن العمود P تعيين وزن 6، ثم 5.64، ثم 5.3 وهلم جرا. هذا الفرق الوحيد بين التباين البسيط و إوما. تذكر: بعد أن نجمع السلسلة بأكملها (في العمود س) لدينا التباين، وهو مربع الانحراف المعياري. إذا أردنا التقلب، علينا أن نتذكر أن تأخذ الجذر التربيعي لهذا التباين. ما هو الفرق في التقلب اليومي بين التباين و إوما في حالة غوغل لها أهمية: التباين البسيط أعطانا تقلب يومي من 2.4 ولكن إوما أعطى تقلب يومي فقط 1.4 (انظر جدول البيانات لمزيد من التفاصيل). على ما يبدو، استقرت تقلبات غوغل في الآونة الأخيرة وبالتالي، قد يكون التباين البسيط مرتفع بشكل مصطنع. فارق اليوم هو وظيفة من بيور تباين أيام ستلاحظ أننا بحاجة إلى حساب سلسلة طويلة من الأثقال الهبوط أضعافا مضاعفة. لن نفعل الرياضيات هنا، ولكن واحدة من أفضل ملامح إوما هو أن السلسلة بأكملها يقلل بسهولة إلى صيغة عودية: ريكورسيف يعني أن المراجع التباين اليوم (أي وظيفة من التباين أيام سابقة). يمكنك أن تجد هذه الصيغة في جدول البيانات أيضا، وتنتج نفس النتيجة بالضبط كما حساب لونغاند يقول: التباين اليوم (تحت إوما) يساوي التباين الأمس (مرجحة من لامدا) بالإضافة إلى الأمتار مربعة العودة (وزنه من قبل ناقص لامدا). لاحظ كيف نحن مجرد إضافة فترتين معا: يوم أمس التباين المرجح والأمثلة المرجحة، مربعا العودة. ومع ذلك، لامدا هو لدينا تمهيد المعلمة. يشير ارتفاع اللامدا (مثل ريسكمتريكس 94) إلى انحطاط بطيء في السلسلة - من الناحية النسبية، سيكون لدينا المزيد من نقاط البيانات في السلسلة، وسوف تسقط ببطء أكثر. من ناحية أخرى، إذا قلنا من لامدا، فإننا نشير إلى انحلال أعلى: الأوزان تسقط بسرعة أكبر، ونتيجة مباشرة للتسوس السريع، يتم استخدام نقاط بيانات أقل. (في جدول البيانات، لامدا هو المدخلات، حتى تتمكن من تجربة مع حساسية لها). سوماري التقلب هو الانحراف المعياري لحظية من الأسهم ومقياس المخاطر الأكثر شيوعا. وهو أيضا الجذر التربيعي للتباين. يمكننا قياس التباين تاريخيا أو ضمنيا (التقلب الضمني). عند قياس تاريخيا، وأسهل طريقة هو التباين البسيط. ولكن الضعف مع التباين بسيط هو كل عوائد الحصول على نفس الوزن. لذلك نحن نواجه مفاضلة الكلاسيكية: نحن نريد دائما المزيد من البيانات ولكن المزيد من البيانات لدينا أكثر يتم تخفيف الحساب لدينا عن بعد (أقل أهمية) البيانات. ويحسن المتوسط المتحرك المرجح أضعافا مضاعفة (إوما) على التباين البسيط بتخصيص أوزان للعائدات الدورية. من خلال القيام بذلك، يمكننا على حد سواء استخدام حجم عينة كبيرة ولكن أيضا إعطاء المزيد من الوزن لعوائد أكثر حداثة. (لعرض فيلم تعليمي حول هذا الموضوع، زيارة السلاحف بيونيك). نوع من الضرائب المفروضة على الأرباح الرأسمالية التي تكبدها الأفراد والشركات. أرباح رأس المال هي الأرباح التي المستثمر. أمر لشراء ضمان بسعر أو أقل من سعر محدد. يسمح أمر حد الشراء للمتداولين والمستثمرين بتحديده. قاعدة دائرة الإيرادات الداخلية (إرس) تسمح بسحب الأموال بدون رسوم من حساب حساب الاستجابة العاجلة. القاعدة تتطلب ذلك. أول بيع الأسهم من قبل شركة خاصة للجمهور. وكثيرا ما تصدر مكاتب الملكية الفكرية من قبل الشركات الأصغر سنا التي تسعى. نسبة الدين هي نسبة الدين المستخدمة لقياس الرافعة المالية للشركة أو نسبة الدين المستخدمة لقياس الفرد. وهناك نوع من هيكل التعويضات التي يطبقها مديرو الصناديق عادة ما يكون جزء التعويض فيها مستندا إلى الأداء.
No comments:
Post a Comment